首页 | 本学科首页   官方微博 | 高级检索  
     

应用GhostNet卷积特征的ECO目标跟踪算法改进
引用本文:刘超军,段喜萍,谢宝文. 应用GhostNet卷积特征的ECO目标跟踪算法改进[J]. 激光技术, 2022, 46(2): 239-247. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.015
作者姓名:刘超军  段喜萍  谢宝文
作者单位:哈尔滨师范大学 计算机科学与信息工程学院,哈尔滨150025
基金项目:哈尔滨师范大学博士启动基金资助项目(XKB201906);哈尔滨师范大学研究生实践创新基金资助项目(HSDSSCX2020-59)。
摘    要:为了减少有效卷积算子(ECO)跟踪算法的特征提取网络参数量和计算量,采用了一种基于端侧神经网络(GhostNet)改进的ECO目标跟踪算法.首先,采用GhostNet网络作为主干特征提取网络提取图像浅层与深层的卷积特征,运用全局平均池化对卷积特征下采样增加特征对图像的表征能力;其次,将卷积特征与手工特征插值后,与当前滤...

关 键 词:图像处理  目标跟踪  端侧神经网络  有效卷积算子  全局平均池化  卷积特征
收稿时间:2021-03-09

Improvement of ECO target tracking algorithm based on GhostNet convolution feature
LIU Chaojun,DUAN Xiping,XIE Baowen. Improvement of ECO target tracking algorithm based on GhostNet convolution feature[J]. Laser Technology, 2022, 46(2): 239-247. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.015
Authors:LIU Chaojun  DUAN Xiping  XIE Baowen
Affiliation:(College of Computer Science and Information Engineering, Harbin Normal University, Harbin 150025, China)
Abstract:In order to reduce the amount of feature extraction network parameters and computation of effective convolution operator(ECO)tracking algorithm,the improved eco target tracking algorithm based on GhostNet was adopted.Firstly,the GhostNet network was used as the main feature extraction network to extract the convolution features of shallow and deep layers,and the global average pooling was adapted to downsampling convolution features to improve the image representation ability.Secondly,after interpolating the convolution feature with the manual feature,convolution calculation was performed with the current filter in the Fourier domain to realize the target localization.Finally,conjugate gradient algorithm was used to optimize the loss function of the sum of response error and penalty term to update the filter.Theoretical analysis and experimental verification were carried out on the proposed algorithm and OTB2015 and VOT2018 datasets,then the comparative experimental data of target tracking were obtained.The results show that compared with the ECO algorithm based on ResNet feature extraction network,the proposed algorithm can achieve higher precision tracking,the convolution feature extraction process reduces 95.75%of computation and 79.69%of parameters,and the tracking speed increases 160%at the same time.These results provide a reference for the research of lightweight target tracking algorithms.
Keywords:image processing  target tracking  GhostNet  efficient convolution operators  global average pooling  convolution feature
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《激光技术》浏览原始摘要信息
点击此处可从《激光技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号