首页 | 本学科首页   官方微博 | 高级检索  
     


Design of low power multi-ternary digit multiplier in CNTFET technology
Affiliation:1. Nano-technology & Quantum Computing lab, Shahid Beheshti University, GC, Tehran, Iran;2. Department of Electrical and Computer Engineering, Graduate University of Advanced Technology, Kerman, Iran;3. Electrical and Computer Engineering Department, New Mexico State University, Las Cruces, USA
Abstract:This work introduces the method to implement energy efficient designs of arithmetic units such as a ternary full adder, ripple carry adder, single-trit multiplier and multi-trit multiplier using carbon nanotube field effect transistors (CNTFETs). A CNTFET unique feature of the threshold voltage variation by changing the CNT diameter, make it a suitable alternative for being employed in ternary logic designs. In designing the proposed circuits, decoder circuit functionality is realized by various threshold detector circuits tuned to a specific logical threshold voltage value. The multiplier circuit is designed by combing the capacitive logic and the minority function. In order to test the practicability of proposed circuits in cascaded circuits, multi-digit adder and multiplier circuits are constructed. The proposed multi-digit multiplier structure is based on classical Wallace multiplier and includes various optimized versions of adder and multiplier circuits. Extensive simulation has been done to examine the competency of proposed designs under different test conditions. The design of 3-trit multiplier formed by combing the proposed adder and multiplier circuits shows 16 times reduction in power consumption as well as energy consumption in comparison to previous multiplier design.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号