首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic characteristics of spindle with water-lubricated hydrostatic bearings for ultra-precision machine tools
Affiliation:1. Department of Engineering Mechanics, Northwestern Polytechnical University, Xi''an 710072, People''s Republic of China;2. School of Mechanical-Electric Engineering, Xidian University, Xi’an 710071, China;3. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, China;4. Department of Mechanical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
Abstract:A key component of ultra-precision machine tools is the spindle. The motivation for this study was to improve machining accuracies in precision cutting and grinding by pursuing improvements in the spindle characteristics by designing a sophisticated spindle with water-lubricated hydrostatic bearings. The static bearing stiffness of the developed spindle was investigated in previous studies. In addition to the static bearing stiffness, the dynamic characteristics regarding bearing stiffness also affect significantly on the machining results. In this study, dynamic characteristics of the developed spindle with water-lubricated hydrostatic bearings were investigated via simulations and experiments. Not only bearing dynamics but also rotor dynamics were considered in this study.In the simulation studies, the spindle dynamic characteristics were analysed based on the transfer matrix method. A spindle rotor supported with hydrostatic bearings was represented by discrete sections of the rotor. The mathematical model of transverse linear vibrations of the spindle rotor was derived with distributed parameters for these discretized rotor sections. As a result of the analysis on the amplitude-frequency characteristic, radial displacements of the rotor due to bearing displacement and bending deformation were defined. Then, the frequency characteristics were represented with Nyquist plots. Resonant frequencies and amplitudes formation in the transverse vibration of the rotor were determined. The influence of rotor bending deformations on spindle compliance was assessed. Furthermore, the study examined the influences of the supply pressure of the lubricating fluid, radial clearance and journal diameter of the hydrostatic bearings on the amplitude of the rotor vibration, and the resonance frequency of the system.Furthermore, the dynamic characteristics of the spindle were examined experimentally. The simulation results were in good agreement with the actual spindle dynamics obtained experimentally. The influence of the structural parameters of the rotor and the operating parameters of the bearings on the spindle dynamic characteristics was also determined. It was verified that the amplitude of the vibration of the rotor overhang part was dominantly affected not by bearing stiffness but by bending stiffness of the bearing journal of the front bearing and the length of the rotor overhang.Then it was verified that the resultant displacement of the rotor in the radial direction due to the influence of the bearing characteristics and the structural effect of the rotor is significantly small. Practical recommendations to improve the spindle design in terms of the dynamic characteristics of the spindle with water-lubricated hydrostatic bearings were also derived.
Keywords:Spindle  Hydrostatic bearings  Machine tools  Dynamic characteristics  Transfer matrix method  Dynamic compliance  Resonant frequency  Vibration amplitude
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号