首页 | 本学科首页   官方微博 | 高级检索  
     


Development and investigations on a hybrid tooling concept for coaxial and concurrent application of electrochemical and laser micromachining processes
Affiliation:1. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China;2. Shenzhen Orion Laser Technology Co. Ltd., Shenzhen 518101, China
Abstract:In hybrid laser-electrochemical micromachining, both laser and electrochemical process energies act along the same machining axis and thus both influence material removal by their interaction. The traditional nozzle based laser assisted jet-ECM concepts require laser to be focused on workpiece surface in an electrochemical environment and are limited in aspect ratios as the nozzle stays above the workpiece surface. In this work, a hybrid tooling concept is proposed for a novel process scheme of precision hybrid laser-electrochemical micromachining. The tool serves the function of both an ECM electrode as well as a leaky-type multimode waveguide for the laser and delivers laser homogeneously together with the electrolyte on the workpiece surface without requiring laser to be focused on the workpiece surface. A precision prototype hybrid machine-tool is developed which employs short pulsed nano-second laser and micro-second pulsed voltage source for precision micromachining. For this system, ray tracing and detailed multiphysics electrochemical micromachining process simulations are carried out to demonstrate the applicability of this hybrid tooling concept and explain the shape evolution. Successful experimental realization of coaxial and concurrent application of electrochemical and laser processes is presented. Prototype tool electrodes are fabricated and experiments are carried out on an in-house developed prototype hybrid machine tool. The results reveal that the proposed hybrid tool is successfully capable of concentrating laser and electrochemical process energies simultaneously in the same machining zone. However, with the initial design of this hybrid tool, a maximum of 30–40% of laser power is available in the machining zone. Some suggestions for further research will be presented.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号