首页 | 本学科首页   官方微博 | 高级检索  
     


Water-Resistant Oxide Layers at the Interface of Zinc/Epoxy Bonded Joints
Authors:M Bremont  W Brockmann
Abstract:The durability properties of bonded lap shear joints made from an epoxy/dicyandiamide adhesive and zinc metal coupons have been investigated. The metal coupons were anodized in sodium hydroxide solutions before bonding. The influence of the anodizing conditions on the morphology and composition of the oxide layers has been studied using SEM and TEM imaging analyses as well as X-ray photoelectron spectroscopy. The hydrolytic stability of the bonded joints has been assessed by storing the joints in water at 70 °C or 90 °C for periods of time up to 5 weeks. Polypropylene has been used as a model adhesive to study the influence of mechanical interlocking effects on the performance of the bonded joints. Depending on the anodizing conditions, the improved durability properties have been attributed either to ?mechanical interlocking effects“ or to the higher hydrolytic stability of the oxide layers generated during the anodizing treatment.

Some of the results gained from the anodization of zinc have been extrapolated to hot-dipped galvanized steel. Bonded joints made from hot-dipped galvanized coupons anodized under smooth conditions (2% NaOH) displayed residual shear strengths of up to 70% higher than specimens simply degreased after immersion test. The generation of stable oxide layers as well as the suppression of intergranular corrosion phenomena at the metal/adhesive interface can explain the improved durability properties.
Keywords:Adhesion  zinc  zinc-coated steel  galvanized steel  epoxy adhesives  durability  anodization  interphase  zinc oxide  morphology  X-ray photoelectron spectroscopy
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号