首页 | 本学科首页   官方微博 | 高级检索  
     


Ca2+-dependent structural changes in C-type mannose-binding proteins
Authors:KK Ng  S Park-Snyder  WI Weis
Affiliation:Department of Structural Biology, Stanford University School of Medicine, California 94305, USA.
Abstract:C-type animal lectins are a diverse family of proteins which mediate cell-surface carbohydrate-recognition events through a conserved carbohydrate-recognition domain (CRD). Most members of this family possess a carbohydrate-binding activity that depends strictly on the binding of Ca2+ at two sites, designated 1 and 2, in the CRD. The structural transitions associated with Ca2+ binding in C-type lectins have been investigated by determining high-resolution crystal structures of rat serum mannose-binding protein (MBP) bound to one Ho3+ in place of Ca2+, and the apo form of rat liver MBP. The removal of Ca2+ does not affect the core structure of the CRD, but dramatic conformational changes occur in the loops. The most significant structural change in the absence of Ca2+ is the isomerization of a cis-peptide bond preceding a conserved proline residue in Ca2+ site 2. This bond adopts the cis conformation in all Ca2+-bound structures, whereas both cis and trans conformations are observed in the absence of Ca2+. The pattern of structural changes in the three loops that interact with Ca2+ is dictated in large part by the conformation of the prolyl peptide bond. The highly conserved nature of Ca2+ site 2 suggests that the transitions observed in MBPs are general features of Ca2+ binding in C-type lectins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号