首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamically adaptive networks for integrating optimal pressure management and self-cleaning controls
Abstract:This paper investigates the problem of integrating optimal pressure management and self-cleaning controls in dynamically adaptive water distribution networks. We review existing single-objective valve placement and control problems for minimizing average zone pressure (AZP) and maximizing self-cleaning capacity (SCC). Since AZP and SCC are conflicting objectives, we formulate a bi-objective design-for-control problem where locations and operational settings of pressure control and automatic flushing valves are jointly optimized. We approximate Pareto fronts using the weighted sum scalarization method, which uses a previously developed convex heuristic to solve the sequence of parametrized single-objective problems. The resulting Pareto fronts suggest that significant improvements in SCC can be achieved for minimal trade-offs in AZP performance. Moreover, we demonstrate that a hierarchical design strategy is capable of yielding good quality solutions to both objectives. This hierarchical design considers pressure control valves first placed for the primary AZP objective, followed by automatic flushing valves placed to augment SCC conditions. In addition, we investigate an adaptive control scheme for dynamically transitioning between AZP and SCC controls. We demonstrate these control challenges on case networks with both interconnected and branched topology.
Keywords:Dynamically adaptive networks  Bi-objective optimization  Adaptive control  Self-cleaning networks  Pressure management
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号