首页 | 本学科首页   官方微博 | 高级检索  
     


Anomaly detection for construction vibration signals using unsupervised deep learning and cloud computing
Affiliation:1. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China;2. Department of Civil and Environmental Engineering, Research Institute for Artificial Intelligence of Things, The Hong Kong Polytechnic University, Hong Kong, China;1. School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, PR China;2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, PR China;1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Shandong, Qingdao 266590, China;2. College of Intelligent Equipment, Shandong University of Science and Technology, Shandong, Taian 271019, China;1. School of Reliability and Systems Engineering, Beijing University of Aeronautics and Astronautics, Beijing, PR China;2. Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, PR China;3. State Key Laboratory of Virtual Reality Technology and System, Beijing, PR China
Abstract:In-operation construction vibration monitoring records inevitably contain various anomalies caused by sensor faults, system errors, or environmental influence. An accurate and efficient anomaly detection technique is essential for vibration impact assessment. Identifying anomalies using visualization tools is computationally expensive, time-consuming, and labor-intensive. In this study, an unsupervised approach for detecting anomalies in construction vibration monitoring data was proposed based on a temporal convolutional network and autoencoder. The anomalies were autonomously detected on the basis of the reconstruction errors between the original and reconstructed signals. Considering the false and missed detections caused by great variability in vibration signals, an adaptive threshold method was applied to achieve the best identification performance. This method used the log-likelihood of the reconstruction errors to search for an optimal coefficient for anomalies. A distributed training strategy was implemented on a cloud platform to speed up training and perform anomaly detection without significant time delay. Construction-induced accelerations measured by a real vibration monitoring system were used to evaluate the proposed method. Experimental results show that the proposed approach can successfully detect anomalies with high accuracy; and the distributed training can remarkably save training time, thereby realizing anomaly detection for online monitoring systems with accumulated massive data.
Keywords:Anomaly detection  Cloud computing  Distributed training  Unsupervised deep learning  Vibration-based monitoring
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号