首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation of macrospherical magnesia-rich magnesium aluminate spinel catalysts for methanolysis of soybean oil
Authors:Yanchang Wang  Sailong Xu  Lan Yang  Dianqing Li  David G. Evans  Xue Duan
Affiliation:State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Abstract:In order to fully exploit the green characteristics of solid base catalysts they should be fabricated into macrostructured rather than powder form. Magnesia-rich magnesium aluminate spinel (MgO·MgAl2O4) framework catalysts with tunable basicity have been prepared by using γ‐Al2O3 macrospheres (0.5-1.0 mm in diameter) as a hard template. The process involves in situ growth of magnesium-aluminum layered double hydroxides (MgAl-LDHs) in the channels of the γ‐Al2O3 macrospheres by the urea hydrolysis method, followed by calcination, tuning of the basicity through etching of excess aluminum with aqueous alkali and a final calcination step. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), elemental analysis and low temperature N2 adsorption-desorption studies demonstrate that the composite MgO·MgAl2O4 materials are composed of nanosized rod-like particles aggregated into a spherical framework. Catalytic reactivity was investigated by using methanolysis of soybean oil as probe reaction. The MgO·MgAl2O4 composite shows a higher biodiesel yield compared to an MgO/MgAl2O4/γ‐Al2O3 material with the same loading of magnesium prepared by a conventional impregnation method. The enhanced catalytic activity of the former material can be ascribed to its higher basicity, specific surface area, pore volume and pore size.
Keywords:Catalysis   Catalyst support   Nanostructure   Magnesium aluminate spinel   Biochemical engineering   Template method
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号