首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamic and Raman spectroscopic studies on hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrates
Authors:Jun Sakamoto
Affiliation:Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3-Machikaneyama, Toyonaka, Osaka 560-8531, Japan
Abstract:Thermodynamic stability and hydrogen occupancy on the hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrate have been investigated by means of phase equilibrium (pressure-temperature) measurements and Raman spectroscopic analyses for two mole fractions, 0.018 and 0.034 (stoichiometric for the cubic structure) of tetra-n-butyl ammonium fluoride aqueous solutions. In the case of higher concentration (0.034), the stability boundary curve of hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrate locates at about 23 K higher temperature than that of hydrogen+tetrahydrofuran mixed gas hydrate. The storage capacity of hydrogen in the cubic structure for the hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrate is smaller than that of hydrogen+tetrahydrofuran mixed gas hydrate. In the case of hydrate prepared from the lower concentration (0.018) of aqueous solution, the Raman spectra and phase behavior reveal that the cubic structure of semi-clathrate hydrate is changed to a different one at about 9 MPa and 299.2 K. The new structure can entrap larger amount of hydrogen than the cubic one. The stability boundary curve of hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrate obtained in the aqueous solution of lower mole fraction (0.018) is shifted to slightly low-temperature or high-pressure side from that of higher mole fraction (0.034).
Keywords:Gas hydrate  Phase equilibria  Gas storage  Stability  Solutions  Gases
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号