首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于GA和支持向量机的车牌字符识别方法
引用本文:王润民,钱盛友,姚畅. 一种基于GA和支持向量机的车牌字符识别方法[J]. 计算机工程与应用, 2008, 44(17): 231-233. DOI: 10.3778/j.issn.1002-8331.2008.17.069
作者姓名:王润民  钱盛友  姚畅
作者单位:湖南科技大学,管理学院.湖南,湘潭,411201;湖南科技大学,信息与控制研究所,湖南,湘潭,411201;湖南师范大学,物理与信息科学学院,长沙,410081;北京交通大学,电子信息工程学院,北京,100044
摘    要:以高斯核为其核函数的支持向量机在实际应用中表现出优良的学习性能,被广泛应用于模式分类中。支持向量机的识别性能对参数的选取是敏感的,惩罚因子C和核函数参数σ对支持向量机性能会产生重要的影响。针对高斯核支持向量机在车牌字符识别问题中的应用,提出了一种基于遗传算法的参数选择方法。首先确定合适的遗传算法适应度函数,然后利用遗传算法对支持向量机的参数进行优化,最后在各个识别子网中分别采用参数优化后的支持向量机对车牌字符进行识别。实验结果表明,该方法取得了令人满意的识别率。

关 键 词:字符识别  遗传算法  支持向量机  神经网络
收稿时间:2007-09-17
修稿时间:2007-12-14 

Vehicle license plate characters recognition based on genetic algorithms & support vector machines
WANG Run-min,QIAN Sheng-you,YAO Chang. Vehicle license plate characters recognition based on genetic algorithms & support vector machines[J]. Computer Engineering and Applications, 2008, 44(17): 231-233. DOI: 10.3778/j.issn.1002-8331.2008.17.069
Authors:WANG Run-min  QIAN Sheng-you  YAO Chang
Affiliation:1.School of Management,Hunan University of Science and Technology,Xiangtan,Hunan 411201,China 2.Graduate School of Information & Control,Hunan University of Science and Technology,Xiangtan,Hunan 411201,China 3.College of Physics and Information Science,Hunan Normal University,Changsha 410081,China 4.School of Electronics and Information Engineering,Beijing Jiaotong University,Beijing 100044,China
Abstract:The Support Vector Machines(SVM) with Gauss kernel function is widely used in pattern recognition because of its excellent properties.However,the performance of SVM with Gauss kernel is influenced greatly by the penalty parameter C and the scale parameter σ.A kind of method to select these parameters using genetic algorithms(GA) is proposed based on the study of vehicle license plate characters recognition.Firstly the appropriate fitness function for GA operation is determined,and then the parameters of SVM are selected by GA.Finally,the characters of the vehicle license plate are recognized by SVM with optimized parameters in various recognition sub-networks.The experimental results demonstrate the efficiency of the proposed approach.
Keywords:character recognition  genetic algorithms  support vector machines  neural networks
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号