Utilization of reaction medium-dependent regiospecificity of Candida antarctica lipase (Novozym 435) for the synthesis of 1,3-dicapryloyl-2-docosahexaenoyl (or eicosapentaenoyl) glycerol |
| |
Authors: | Roxana Irimescu Kiyomi Furihata Kazuhiko Hata Yugo Iwasaki Tsuneo Yamane |
| |
Affiliation: | (1) Central Research Laboratory, Nippon Suisan Kaisha, Ltd., 192-0906 Tokyo, Japan;(2) Laboratory of Molecular Biotechnology, Graduate School of Bio- and Agro-Sciences, Nagoya University, 464-8601 Nagoya, Japan |
| |
Abstract: | A highly efficient enzymatic method for the synthesis of regioisomerically pure 1,3-dicapryloyl-2-docosahexaenoyl glycerol (CDC) in two steps was established. 2-Monoglyceride (2-MG) formation by ethanolysis of tridocosahexaenoylglycerol (DDD) with immobilized Candida antarctica lipase (Novozym 435) as catalyst was the key step of the synthesis. CDC was finally obtained by reesterification of 2-MG with ethylcaprylate (EtC) catalyzed by Rhizomucor miehei lipase (Lipozyme IM). The regiospecificity of Novozym 435 depended on the type of reaction and the initial composition of the reaction medium. It displayed strict 1,3-regiospecificity for ethanolysis at a high excess of ethanol in the reaction mixture although it displayed no regiospecificity in transesterification and esterification reactions. The highest yield of CDC (85.4%) was obtained by ethanolysis at a 4∶1 weight ratio of ethanol/DDD for 6 h followed by reesterification at a 20∶1 molar ratio of EtC/initial DDD for 1.5 h. The regioisomeric purity of CDC was 100%. Good results were obtained also for the synthesis of 1,3-dicapryloyl-eicosapentaenoylglycerol (CEC) by the same method: 84.2% yield and 99.8% regioisomeric purity at the same reactant ratios as above. The yield of the reesterification step and the regioisomeric purity of the product were influenced by the molar ratio of the reactants for both CDC and CEC syntheses: higher excess of EtC favored higher yields and regioisomeric purity of the products. |
| |
Keywords: | 1,3-Dicapryloyl-2-docosahexaenoyl glycerol 1,3-dicapryloyl-2-eicosapentaenoylglycerol esterification ethanolysis immobilized Candida antarctica lipase immobilized Rhizomucor miehei lipase transesterification regiospecificity of lipases |
本文献已被 SpringerLink 等数据库收录! |
|