首页 | 本学科首页   官方微博 | 高级检索  
     


Cold Binary Atomic Collisions in a Light Field
Authors:Paul S. Julienne
Affiliation:National Institute of Standards and Technology, Gaithersburg, MD 20899-0001
Abstract:The rate coefficients are calculated for trap loss due to excited state formation during s-wave collisions of two atoms in a light field in a cold atomic gas near conditions for formation of a Bose-Einstein condensate. Blue detuning from the allowed atomic resonance transition causes excitation of a replusive molecular potential, whereas red detuning causes excitation when the light is tuned near a bound vibrational energy level of an attractive molecular potential. In either case, when the light intensity is low and the detuning is large compared to the natural linewidth of the atomic transition, the rate coefficient for the collisional loss rate is proportional to a molecular Franck-Condon factor. A simple reflection approximation formula is derived which permits the rate coefficient to be given analytically in either case. The Franck-Condon factor is equal to |Ψg(RC)2|/DC, where Ψg(RC) is the ground state scattering wavefunction at the Condon point RC, where the quasimolecule is in resonance with the exciting light, and DC is the slope difference between ground and excited potentials at RC. The analytic reflection approximation formula, as well as a simple phase-amplitude formula for the intermediate range wavefunction, give excellent agreement with the results of numerical quantum mechanical calculations. The trap loss rates due to binary collisions are comparable to or exceed those due to atomic recoil heating for a wide range of detunings to the blue of atomic resonance and near the peaks of photoassociation resonances for the case of red detuning.
Keywords:binary atomic collision   Bose-Einstein Condensation   cold trapped atoms   Franck-Condon factor   photoassociation spectrum   spectral line shape
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号