首页 | 本学科首页   官方微博 | 高级检索  
     


Development of bipolar plates for fuel cells from graphite filled wet-lay material and a thermoplastic laminate skin layer
Authors:Brent D Cunningham  Jianhua Huang  Donald G Baird
Affiliation:Chemical Engineering and Macromolecules and Interfaces Institute Virginia Tech, Blacksburg, VA 24061, United States
Abstract:In this paper, a method with the potential to rapidly produce thermoplastic polymer composite bipolar plates with improved formability and through-plane conductivity is described. In our earlier work, it was reported that composite bipolar plates made with graphite filled wet-lay materials exhibited excellent mechanical properties and in-plane electrical conductivity. However, the through-plane conductivity and formability of the materials needed improvement. In this work, laminate polymer composite plates consisting of a wet-lay based core and a fluoropolymer/graphite skin layer are manufactured in an effort to improve formability and through-plane conductivity. These plates are characterized by their through-plane and in-plane conductivity, half-cell resistance, and mechanical properties at ambient and elevated temperatures. The laminate plates with PPS based wet-lay core exhibited bulk conductivities of above 300 S cm−1, tensile strength of up to 34 MPa, and flexural strength of up to 54 MPa. Compared to the bipolar plates consisting of wet-lay material only, the bipolar plates with laminate structure exhibited an increase in through-plane conductivity of 25–35%, as well as a decrease in half-cell resistance by a factor of up to 5. The laminate bipolar plates can be manufactured in several ways with two of them being discussed in detail in the paper.
Keywords:Fuel cell  Bipolar plate  Laminate  Wet-lay composite  Graphite composite
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号