首页 | 本学科首页   官方微博 | 高级检索  
     


An experimental and numerical investigation on the cross flow through gas diffusion layer in a PEM fuel cell with a serpentine flow channel
Authors:Jaewan Park  Xianguo Li
Affiliation:Department of Mechanical Engineering, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada N2L 3G1
Abstract:A serpentine flow channel is one of the most common and practical channel layouts for a polymer electrolyte membrane (PEM) fuel cell since it ensures the removal of water produced in a cell with acceptable parasitic load. During the reactant flows along the flow channel, it can also leak or cross to neighboring channel via the porous gas diffusion layer due to the high pressure gradient caused by the short distance. Such a cross flow leads to a larger effective flow area altering reactant flow in the flow channel so that the resultant pressure and flow distributions are substantially different from that without considering cross flow, even though this cross flow has largely been ignored in previous studies. In this work, a numerical and experimental study has been carried out to investigate the cross flow in a PEM fuel cell. Experimental measurements revealed that the pressure drop in a PEM fuel cell is significantly lower than that without cross flow. Three-dimensional numerical simulation has been performed for wide ranges of flow rate, permeability and thickness of gas diffusion layer to analyze the effects of those parameters on the resultant cross flow and the pressure drop of the reactant streams. Considerable amount of cross flow through gas diffusion layer has been found in flow simulation and its effect on pressure drop becomes more significant as the permeability and the thickness of gas diffusion layer are increased. The effects of this phenomenon are also crucial for effective water removal from the porous electrode structure and for estimating pumping energy requirement in a PEM fuel cell, it cannot be neglected for the analysis, simulation, design, operation and performance optimization of practical PEM fuel cells.
Keywords:PEM fuel cell  Cross flow  Permeability  Serpentine flow channel  Numerical simulation  Experimental measurement
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号