首页 | 本学科首页   官方微博 | 高级检索  
     

基于双种群算法的模拟移动床多目标操作优化
引用本文:葛启承,肖迪,林锦国,程明霄. 基于双种群算法的模拟移动床多目标操作优化[J]. 化工自动化及仪表, 2011, 38(4): 427-431
作者姓名:葛启承  肖迪  林锦国  程明霄
作者单位:南京工业大学自动化与电气工程学院,南京,211816
基金项目:国家高技术研究发展计划863项目
摘    要:以有限元法求解模拟移动床的稳态TMB模型和动态SMB模型,提出基于Pareto非劣解集的多目标双种群遗传粒子群算法;利用动态SMB模型仿真模拟移动床色谱吸附分离过程,以分离纯度和性能指标分别作为约束条件和目标函数进行多目标操作优化设计.仿真结果表明,SMB模型较之TMB模型更真实可靠,双种群遗传粒子群算法也较单一种群的...

关 键 词:模拟移动床  多目标优化  双种群  遗传算法  粒子群算法

Multi-objective Optimization of Simulated Moving Bed Based on GA and PSO Algorithm
GE Qi-cheng,XIAO Di,LIN Jin-guo,CHENG Ming-xiao. Multi-objective Optimization of Simulated Moving Bed Based on GA and PSO Algorithm[J]. Control and Instruments In Chemical Industry, 2011, 38(4): 427-431
Authors:GE Qi-cheng  XIAO Di  LIN Jin-guo  CHENG Ming-xiao
Affiliation:(College of Automation and Electrical Engineering,Nanjing University of Technology,Nanjing 211816,China)
Abstract:Both dynamic SMB model and steady TMB model were solved with finite elements method.Multi-objective genetic algorithm(GA) and particle swarm optimization(PSO) based on Pareto non-inferior solutions set were combined to optimize the operating condition.Double populations were chosen when one using GA and another using PSO and evolving independently but accompanied by individual migration.The results show that the SMB approach outperforms the TMB,and the GA and PSO algorithms have better convergence and robustness.The optimized operating conditions are effective to improve the separation performance.
Keywords:simulated moving bed  multi-objective optimization  double populations  GA  PSO
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号