首页 | 本学科首页   官方微博 | 高级检索  
     


The relationship between intergranular cavitation and superplastic flow in an industrial copper base alloy
Authors:R G Fleck  C J Beevers  D M R Taplin
Affiliation:(1) Chalk River Nuclear Laboratories, Atomic Energy of Canada Ltd, Chalk River, Ontario, Canada;(2) Department of Physical Metallurgy and Science of Materials, The University of Birmingham, UK;(3) Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada
Abstract:Intergranular cavitation has been observed during the superplastic deformation of a fine grain sized (1 mgrm) Cu-2.8% Al-1.8% Si-0.4% Co alloy when tested at temperatures ge500° C. High voltage electron microscopy revealed that the cavities could be nucleated at twin boundary/grain boundary intersections. The maximum elongation occurs at a higher temperature than that of the maximum strain-rate sensitivity and this is explained in terms of grain-boundary migration, at the higher temperature, which restricts the cavitation process. This explanation was put forward on the basis of texture analysis which was used to study the deformation characteristics at the temperatures of maximum elongation and strain-rate sensitivity. The final fracture mode is shown to change with test temperature: (i) at 400° C no cavitation occurs and fracture is by ductile rupture, (ii) at 500 to 550° C cavitation occurs and fracture is by the interlinkage of voids by an intergranular void sheet (IVS) mechanism and (iii) at 800° C grain growth occurs and fracture occurs by the propagation and interlinkage of grain-boundary cracks along the grain boundaries.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号