首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of the effects of small additions of silicon or aluminum on the oxidation of iron-chromium alloys
Authors:F H Stott  F I Wei
Affiliation:(1) Corrosion and Protection Centre, University of Manchester Institute of Science and Technology, P.O. Box 88, M60 1QD Manchester, England;(2) Present address: Research and Development Department, China Steel Corporation, Kaohsiung, Taiwan, Republic of China
Abstract:A study has been undertaken of the oxidation behavior of Fe-26 wt.% Cr-1 wt.% Al and Fe-26 wt.% Cr-1 wt.% Si at 800° and 1000°C in oxygen, in order to determine the usefulness of the two tertiary elements in facilitating the development of the Cr2O3 external scale. The research has also permitted a comparison of the modes of internal oxidation of these elements, with a view to ascertaining the ease of establishment of the tertiary element oxides as healing layers at the scale/alloy interface. It has been shown that aluminum is the more effective addition in this respect, due to formation of a higher population density of internal oxide nuclei in the early stages. However, in the 1% Al alloy, the precipitates penetrate inward, to considerable depths, as continuous platelets, making development of a complete healing layer difficult. In practice, a higher aluminum concentration is necessary for the closely spaced precipitates to coalesce to form the healing layer, but the process then occurs rapidly. The initial internal oxide nuclei in the 1% Si alloy have a much smaller population density and are restricted to a location very close to the surface. Thus, a healing layer can be established, but the large interparticle spacing makes this a very slow process. Even at a higher silicon concentration, it takes a significant period to be completed. The effects are discussed and accounted for, particularly in terms of the relative stabilities of the various oxides.
Keywords:internal oxidation  silica  alumina  iron-chromium alloys
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号