首页 | 本学科首页   官方微博 | 高级检索  
     

一阶脉冲微分方程边值问题的解
引用本文:孙玉虎,王东兴. 一阶脉冲微分方程边值问题的解[J]. 淮海工学院学报, 2012, 0(2): 4-8
作者姓名:孙玉虎  王东兴
作者单位:中国矿业大学徐海学院.江苏徐州221008
摘    要:结合当前非线性泛函分析中的研究热点——脉冲微分方程边值问题,讨论了两类一阶脉冲微分方程边值解存在性问题.主要利用算子理论、Leary—Schauder拓扑度理论方法得出两类微分方程边值解的存在性定理,最后通过实例来验证所得结论在研究脉冲方程中的有效应用.

关 键 词:脉冲微分方程  Leray-Schauder度定理  边值问题

Solutions to Boundary Value Problems in First-order Impulsive Differential Equations
SUN Yu-hu,WANG Dong-xing. Solutions to Boundary Value Problems in First-order Impulsive Differential Equations[J]. Journal of Huaihai Institute of Technology:Natural Sciences Edition, 2012, 0(2): 4-8
Authors:SUN Yu-hu  WANG Dong-xing
Affiliation:(College of Xuhai, China University of Mining and Technology, Xuzhou 221008, China)
Abstract:The value problem in impulsive differential equations is a hot issue in researches on nonlinear functional analysis. We used the operator theory and the Leary-Schauder theory to study the existence of two types of solutions for the boundary value problems in first-order impul- sive differential equations. And we used an example to verify the effectiveness of the application of the conclusion in pulsed equations.
Keywords:impulsive differential equation Leary-Schauder theory boundary value problem.
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号