首页 | 本学科首页   官方微博 | 高级检索  
     


An Improved Particle Swarm Optimization for the Combined Heat and Power Dynamic Economic Dispatch Problem
Authors:Yujiao Zeng  Yanguang Sun
Affiliation:State Key Laboratory of Hybrid Process Industry Automation System and Equipment Technology, Beijing, China
Abstract:—This study presents a novel improved particle swarm optimization algorithm to solve the combined heat and power dynamic economic dispatch problem. This problem is formulated as a challenging non-convex and non-linear optimization problem considering practical characteristics, such as valve-point effects, transmission losses, ramp-rate limits, mutual dependency of power and heat, spinning reserve requirements, and transmission security constraints. The proposed method combines classical particle swarm optimization with a chaotic mechanism, time-variant acceleration coefficients, and a self-adaptive mutation scheme to prevent premature convergence and improve solution quality. Moreover, multiple efficient constraint handling strategies are employed to deal with complex constraints. The effectiveness of the proposed improved particle swarm optimization for solving the combined heat and power dynamic economic dispatch problem is validated on three different test systems, and the results are compared with those of other variants of particle swarm optimization as well as other methods reported in the literature. The numerical results demonstrate the superiority of improved particle swarm optimization in solving the combined heat and power dynamic economic dispatch problem while strictly satisfying all the constraints.
Keywords:dynamic economic dispatch  combined heat and power  spinning reserve requirement  transmission security constraint  chaotic descending inertia weight  self-adaptive mutation  multiple constraint handling strategies  improved particle swarm optimization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号