首页 | 本学科首页   官方微博 | 高级检索  
     


Liquefaction and dechlorination of hydrothermally treated waste mixture containing plastics with glass powder
Authors:Sugano Motoyuki  Shimizu Takayuki  Komatsu Akihiro  Kakuta Yusuke  Hirano Katsumi
Affiliation:Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo, Japan. sugano@chem.cst.nihon-u.ac.jp
Abstract:Additive effects of glass powder upon the product yields and chlorine distribution after liquefaction of hydrothermally pretreated mixed waste (HMW) are compared with liquefaction of HMW with any one of water, quartz sand, or glass powder plus water. As a result, addition of either water or quartz sand did not affect liquefaction and dechlorination of HMW. Further, water (5 g) addition did not enhance liquefaction and dechlorination of HMW with glass powder. On the other hand, after liquefaction of HMW with glass powder, the yields of chlorine in the gas and water insoluble constituents decreased and the chlorine yield in the water-soluble constituent increased significantly. Because sodium in glass powder dissolved in a small amount (0.5 g) of water resulted from dehydration of HMW during liquefaction. Further, hydrogen chloride derived from polyvinylchloride in HMW was neutralized by ion exchange between H(+) and Na(+) dissolved in a small amount of water forming NaCl in the Residue (water-soluble) constituent. Therefore, most of chlorine in HMW was removed easily by water extraction of the Residue constituent after liquefaction of HMW with glass powder. Further, upgrading of HMW into the oil constituent was enhanced due to inhibition of production of chlorine containing organic compounds. Accordingly, it was clarified that glass powder was the most effective additive for liquefaction and dechlorination of HMW.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号