首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of the carbide phase on the tribological properties of high-manganese antiferromagnetic austenitic steels alloyed with vanadium and molybdenum
Authors:L G Korshunov  I I Kositsina  V V Sagaradze  N L Chernenko
Affiliation:(1) Institute for Technology Research and Innovation, Deakin University, Geelong, VIC, 3217, Australia;(2) State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming, 650106, Yunnan, China;(3) Industrial Research Institute Swinburne, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia;
Abstract:Effect of special carbides (VC, M 6C, Mo2C) on the wear resistance and friction coefficient of austenitic stable (M s below −196°C) antiferromagnetic (T N = 40–60°C) steels 80G20F2, 80G20M2, and 80G20F2M2 has been studied. The structure and the effective strength (microhardness H surf, shear resistance τ) of the surface layer of these steels have been studied using optical and electron microscopy. It has been shown that the presence of coarse particles of primary special carbides in the steels 80G20F2, 80G20M2, and 80G20F2M2 quenched from 1150°C decreases the effective strength and the resistance to adhesive and abrasive wear of these materials. This is caused by the negative effect of carbide particles on the toughness of steels and by a decrease in the carbon content in austenite due to a partial binding of carbon into the above-mentioned carbides. The aging of quenched steels under conditions providing the maximum hardness (650°C for 10 h) exerts a substantial positive effect on the parameters of the effective strength (H surf, τ) of the surface layer and, correspondingly, on the resistance of steels to various types of wear (abrasive, adhesive, and caused by the boundary friction). The maximum positive effect of aging on the wear resistance is observed upon adhesive wear of the steels under consideration. Upon friction with enhanced sliding velocities (to 4 m/s) under conditions of intense (to 500–600°C) friction-induced heating, the 80G20F2, 80G20M2, and, especially, 80G20F2M2 steels subjected to quenching and aging substantially exceed the 110G13 (Hadfield) steel in their tribological properties. This is due to the presence in these steels of a favorable combination of high effective strength and friction heat resistance of the surface layer, which result from the presence of a large amount of special carbides in these steels and from a high degree of alloying of the matrix of these steels by vanadium and molybdenum. In the process of friction, there are formed nanocrystalline austenitic structures possessing high effective strength and wear resistance on the wear surface of these steels.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号