One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance |
| |
Authors: | Fu-Sheng Ke Ling Huang Guo-Zhen Wei Lian-Jie Xue Jun-Tao Li Bo Zhang Shu-Ru Chen Xiao-Yong Fan Shi-Gang Sun |
| |
Affiliation: | aState Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China |
| |
Abstract: | CuO nanoribbons array (NRA) electrode was fabricated by developing a one-step synthesis route, which consists of advantages of large-scale, fast, and without using any surfactant or template. The structure and electrochemical properties of the CuO NRA electrode were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV) and galvanostatic cycling. The results demonstrated that the CuO NRA electrode can deliver a reversible capacity as high as 608 mAh g−1 up to 275th cycle. The excellent cycleability, the high capacity retention and the high rate-capability of the CuO NRA electrode is attributed to its peculiar nanostructure with large surface area, numerous interspaces of the CuO nanoribbons, and the solid adhesion of the active material to Cu current collector. |
| |
Keywords: | CuO Nanoribbons array Anode One-step synthesis Lithium-ion batteries |
本文献已被 ScienceDirect 等数据库收录! |
|