首页 | 本学科首页   官方微博 | 高级检索  
     


Integral equation based analysis of scattering from 3-D inhomogeneous anisotropic bodies
Authors:Kobidze  G Shanker  B
Affiliation:Dept. of Electr. & Comput. Eng., Comput. Eng. Michigan State Univ., East Lansing, MI, USA;
Abstract:This paper presents an integral equation based scheme to analyze scattering from inhomogeneous bodies with anisotropic electromagnetic properties. Both the permittivity and permeability are assumed to be generalized tensors. Requisite integral equations are derived using volume equivalence theorem with the electric and magnetic flux densities being the unknown quantities. Matrix equations are derived by discretizing these unknowns using three dimensional Rao-Wilton-Glisson basis functions. Reduction of the integral equation to a corresponding matrix equation is considerably more involved due to the presence of anisotropy and the use of vector basis function; methods for evaluation of the integrals involved in the construction of this matrix is elucidated in detail. The method of moments technique is augmented with the fast multipole method and a compression scheme. The latter two enable large scale analysis. Finally, several numerical results are presented and compared against analytical solutions to validate the proposed scheme. An appendix provides analytical derivations for the formulae that are used to validate numerical method, and the necessary formulae that extends the approach presented herein to the analysis of scattering bianisotropic bodies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号