首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis of aluminum infiltrated boron suboxide drag cutters and drill bits
Authors:I O Kayhan  O T Inal
Affiliation:(1) Materials & Metallurgical Engineering Department, New Mexico Tech, Socorro, NM 87801, USA
Abstract:Synthesis of boron suboxide (B6O) was made by reactive sintering of crystalline boron and zinc oxide powders at 1450 °C, in argon, for 12 h. After sintering, Vickers microhardness testing was performed on the material synthesized and an average hardness value of 34 GPa was obtained. Sintered suboxide (in crushed and ground powder form) was then analyzed through optical and scanning electron microscopies and X-ray diffraction. Following the completion of the analyses, consolidation of the powder was performed. Two different routes were carried out: (1) ldquoexplosive consolidationrdquo which was performed in double tube (with a density value of 2.22 g/cm3) and single tube (with a density value of 2.12 g/cm3) canister design arrangements and (2) ldquohot pressingrdquo which was performed in a graphite die assembly, at 1600 °C, in vacuum, for 2 and 4 h (with density values of 2.15 and 2.18 g/cm3 respectively). Consolidated samples of both routes showed different levels of mechanical attachment, agglomeration, porosity, fracture toughness and fracture strength values, whereas microhardness values and X-ray diffraction plots (as shown in Table I and Figs 6 and 8 respectively) were determined to be similar. Following characterizations, compacts of both routes were then given a high temperature sintering treatment (pressureless sintering) at 1800 °C, in vacuum, for full densification. Both in the ldquoas consolidatedrdquo and ldquodensification sinteredrdquo stages test results revealed the most desirable and well-established properties for the ldquoexplosively consolidated double tube designrdquo compacts (with densification sintered density, microhardness and fracture toughness values of 2.46 g/cm3, 38 GPa and 7.05 MPa m1/2 respectively). Consolidation and desification sintering steps were then followed by a pressureless infiltration step. Aluminum was infiltrated into densification sintered ldquodouble tube design consolidatedrdquo and ldquo4 h of pressedrdquo samples (better-compacted and better-sintered compacts) in the temperature range 1100–1250 °C, in argon, for 10 h. During infiltrations, the optimum temperature of the infiltration process was determined to be 1200 °C. Characterization results revealed the most uniform and well established properties once more for the double tube design explosively consolidated compact (with aluminum infiltrated density, microhardness and fracture toughness values of 2.55 g/cm3, 41 GPa and 8.70 MPa m1/2 respectively).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号