首页 | 本学科首页   官方微博 | 高级检索  
     


Postbuckling of functionally graded fiber reinforced composite laminated cylindrical shells, Part II: Numerical results
Authors:Hui-Shen Shen
Affiliation:School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
Abstract:In this Part, the extensive parametric studies performed are reported and numerical results are presented for the buckling and postbuckling of fiber reinforced polymer matrix and metal matrix composite laminated shells subjected to axial compression or external pressure under different sets of environmental conditions. Two kinds of fiber reinforced composite laminated shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The numerical results show that the buckling loads as well as postbuckling strength of the shell can be increased as a result of functionally graded fiber reinforcements. The results reveal that the effect of functionally graded fiber reinforcements on the buckling loads and postbuckling strength of shell with polymer matrix is more pronounced compared to the shell with metal matrix in the case of axial compression. In contrast, in the case of external pressure, the functionally graded fiber reinforcements may have a significant effect on the buckling pressure and postbuckling strength of the shell with metal matrix.
Keywords:Functionally graded laminates   Anisotropic laminated cylindrical shell   Temperature-dependent properties   Buckling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号