首页 | 本学科首页   官方微博 | 高级检索  
     


No effects of high-dose omeprazole in patients with severe airway hyperresponsiveness and (a)symptomatic gastro-oesophageal reflux
Authors:MJ Boeree  FT Peters  DS Postma  JH Kleibeuker
Affiliation:Department of Anesthesia, University of California-San Francisco, 94143-0464, USA.
Abstract:Uptake of inhaled anesthetics may be measured as the amount of anesthetic infused to maintain a constant alveolar concentration of anesthetic. This method assumes that the patient absorbs all of the infused anesthetic, and that none is lost to circuit components. Using a standard anesthetic circuit with a 3-L rebreathing bag simulating the lungs, and simulating metabolism by input of carbon dioxide, we tested this assumption for halothane, isoflurane, and sevoflurane. Our results suggest that after washin of anesthetic sufficient to eliminate a material difference between inspired and end-tidal anesthetic, washin to other parts of the circuit (probably the ventilator) and absorbent (soda lime) continued to remove anesthetic for up to 15 min. From 30 min to 180 min of anesthetic administration, circuit components absorbed trivial amounts of isoflurane (12 +/- 13 mL vapor at 1.5 minimum alveolar anesthetic concentration, slightly more sevoflurane (39 +/- 15 mL), and still more halothane (64 +/- 9 mL). During this time, absorbent degraded sevoflurane (321 +/- 31 mL absorbed by circuit components and degraded by soda lime). The amount degraded increased with increasing input of carbon dioxide (e.g., the 321 +/- 31 mL increased to 508 +/- 48 mL when carbon dioxide input increased from 250 mL/min to 500 mL/min). Measurement of anesthetic uptake as a function of the amount of anesthetic infused must account for these findings. Implications: Systems that deliver inhaled anesthetics may also remove the anesthetic. Initially, anesthetics may diffuse into delivery components and the interstices of material used to absorb carbon dioxide. Later, absorbents may degrade some anesthetics (e.g., sevoflurane). Such losses may compromise measurements of anesthetic uptake.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号