首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrogen from empty cotton boll agro-waste via thermochemical route and feasibility study of operating an IC engine in continuous mode
Authors:Prasanta Das  Samir Charola  Milan Dinda  Himanshu Patel  Subarna Maiti
Affiliation:Process Design & Engineering Cell, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
Abstract:Hydrogen can be cited as prospective source of clean power. In this work hydrogen rich syn-gas generated from the agro-waste, empty cotton bolls was injected into an IC engine in continuous mode along with gasoline. At the air-fuel ratio of 23.40, specific fuel consumption of 0.35 kg kWh?1, the engine could be operated with higher efficiency than with gasoline alone. A distinct reduction in emission characteristics could also be seen. Empty cotton bolls derived after removal of cotton from the flower in field, was first studied for fuel properties. The reasonably high heating value (HHV) of 17.54 MJ kg?1 suggested that it could be a precursor to hydrogen via two stepped thermo-chemical process. The first step involved slow pyrolysis of the biomass at 500 °C for 60 min at a heating rate of 10 °C min?1 yielding 39.71% bio-char by weight. The C, H, N, S and O contents of the produced bio-char was 59.91, 2.91, 0.72, 0.47 and 35.99% respectively and its HHV was 26.7 MJ kg?1. Steam gasification of this bio-char, at 700 °C and water flowrate of 7 mL min?1 exhibited maximum hydrogen yield of 67.42% (v/v) in the syn-gas mixture. Subsequent enrichment of the gas using ethanolamine/ethylene diamine and KMnO4 solutions resulted in more than 90% (v/v) hydrogen in the combustible gas mixture and the test engine could be effectively operated.
Keywords:Empty cotton bolls  Slow fixed bed pyrolysis  Steam gasification  Syn-gas enrichment  IC engine operation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号