首页 | 本学科首页   官方微博 | 高级检索  
     


Intermittent microclimate cooling during exercise-heat stress in US army chemical protective clothing
Authors:Cadarette Bruce S  Cheuvront Samuel N  Kolka Margaret A  Stephenson Lou A  Montain Scott J  Sawka Michael N
Affiliation:U.S. Army Research Institute of Environmental Medicine, Kansas St., Natick, MA 01760-5007, USA. bruce.cadarette@us.army.mil
Abstract:The effectiveness of intermittent, microclimate cooling for men who worked in US Army chemical protective clothing (modified mission-oriented protective posture level 3; MOPP 3) was examined. The hypothesis was that intermittent cooling on a 2 min on-off schedule using a liquid cooling garment (LCG) covering 72% of the body surface area would reduce heat strain comparably to constant cooling. Four male subjects completed three experiments at 30 degrees C, 30% relative humidity wearing the LCG under the MOPP 3 during 80 min of treadmill walking at 224 +/- 5 W . m(-2). Water temperature to the LCG was held constant at 21 degrees C. The experiments were; 1) constant cooling (CC); 2) intermittent cooling at 2-min intervals (IC); 3) no cooling (NC). Core temperature increased (1.6 +/- 0.2 degrees C) in NC, which was greater than IC (0.5 +/- 0.2 degrees C) and CC (0.5 +/- 0.3 degrees C) ( p < 0.05). Mean skin temperature was higher during NC (36.1 +/- 0.4 degrees C) than IC (33.7 +/- 0.6 degrees C) and CC (32.6 +/- 0.6 degrees C) and mean skin temperature was higher during IC than CC ( p < 0.05). Mean heart rate during NC (139 +/- 9 b . min(-1)) was greater than IC (110 +/- 10 b . min(-1)) and CC (107 +/- 9 b . min(-1)) ( p < 0.05). Cooling by conduction (K) during NC (94 +/- 4 W . m(-2)) was lower than IC (142 +/- 7 W . m(-2)) and CC (146 +/- 4 W . m(-2)) ( p < 0.05). These findings suggest that IC provided a favourable skin to LCG gradient for heat dissipation by conduction and reduced heat strain comparable to CC during exercise-heat stress in chemical protective clothing.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号