首页 | 本学科首页   官方微博 | 高级检索  
     


The SDRE control of mobile base cooperative manipulators: Collision free path planning and moving obstacle avoidance
Affiliation:1. Department of Electrical Engineering, Khatam Al-Anbiya University, Tehran, Iran;2. Department of Electrical Engineering, Shahid Sattari Aeronautical University of Science and Technology, Tehran, Iran
Abstract:This work proposes application of a state-dependent Riccati equation (SDRE) controller for wheeled mobile cooperative manipulators. Implementation of the SDRE on a wheeled mobile manipulator (WMM) considering holonomic and non-holonomic constraints is difficult and leads to instability of the system. The present study introduces a method of controlling the WMMs including: a general formulation, state-dependent coefficient parameterization, and control structure of the SDRE. Overcoming the problem of instability of the WMM resulted in control design for a system of cooperative manipulators mounted on a wheeled mobile platform. Optimal load distribution (OLD) was employed to distribute the load between the cooperative arms. The presence of obstacles and the probability of a collision between multiple robots in a workspace are the motivations behind employment of the artificial potential field (APF) approach. Two cooperative manipulators mounted on a mobile platform retrieved from Scout robot were modeled and simulated for situations such as controlling multiple mobile bases (collision avoidance), a cooperative system of manipulators, and moving obstacle avoidance. The OLD improved the load capacity, precision, and stability in motion of the cooperative system. Compatibility of the APF within the structure of the SDRE controller is another promising aspect of this research.
Keywords:SDRE  Wheeled mobile manipulators  Cooperative robots  Artificial potential field  Obstacle avoidance  Collision avoidance  Optimal load distribution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号