首页 | 本学科首页   官方微博 | 高级检索  
     


A cost-effective and automatic surface defect inspection system for hot-rolled flat steel
Affiliation:1. System Dynamics Lab, Department of Mechanical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India;2. Microfluidics and Droplet Dynamics Lab, Department of Mechanical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India;3. Bhabha Atomic Research Centre & Homi Bhabha National Institute, Department of Atomic Energy, Mumbai, Maharashtra, India
Abstract:Defective steel brings economic and commercial reputation losses to the hot-strip manufacturers, and one of the main difficulties in using machine-vision-based technique for steel surface inspection is time taken to process the massive images suffering from uneven illumination. This paper develops a modular and cost-effective AOI system for hot-rolled flat steel in real time. Firstly, a detailed system topology is constructed according to the design goals covering the vast majority of steel mills, lighting setup and typical defect patterns are presented as well. Secondly, the image enhancement method is designed to overcome the uneven-lighting, over- or under-exposure. Thirdly, the defect detection algorithm is developed based on variance, entropy and average gradient derived from non-overlapping 32×32 pixel blocks of steel surface images. Fourthly, the proposed algorithms are implemented on FPGA in parallel to improve the inspection speed. Finally, 18,071 contiguous images (4096×1024 pixel) acquired from 7 defective steel rolls have been inspected by the realized AOI system to evaluate the performance. The experimental results show that the proposed method is speedy and effective enough for real applications in the hot-rolled steel manufacturing, with 92.11% average accuracy while 5.54% false-negative rate.
Keywords:Automatic optical inspection (AOI)  Feature extraction  Field programmable gate array (FPGA)  Image enhancement  Hot-rolled steel strip
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号