首页 | 本学科首页   官方微博 | 高级检索  
     


KDP crystal doped with L-arginine amino acid: growth,structure perfection,optical and strength characteristics
Affiliation:1. Institute for Single Crystals, SSI “Institute for Single Crystals”, NAS of Ukraine, 60 Lenin Avenue, 61001 Kharkiv, Ukraine;2. Institute for Organic Chemistry, NAS of Ukraine, Murmanskaya 5, Kiev-94, 253660, Ukraine;3. Institute for Scintillation Material, SSI “Institute for Single Crystals”, NAS of Ukraine, 60 Lenin Avenue, 61001, Kharkiv, Ukraine
Abstract:Potassium Dihydrogen Phosphate (KDP) crystal doped with L-arginine (L-arg) amino acid with 1.4 wt% concentration in the solution was grown onto a point seed by the method of temperature reduction. For the first time an attempt was made to grow large-size (7 × 6 × 8 cm3) optically transparent crystals, which allowed to analyze the effect of L-arg additive on the physical properties of the different growth sectors ({100} and {101}) of KDP. The incorporation of L-arg into both growth sectors of the crystal was confirmed by the methods of optical and IR spectroscopy and found to be caused by the ability of the amino acid to form hydrogen bonds with the face {100} and electrostatically interact with the positively charged face {101} of KDP crystal. A slight variation in the unit cell parameters was reported, the elementary cell volume of KDP:L-arg crystal increased in comparison with the one of pure KDP by 2·10−2 and 2.07·10−2 Å3 in the sectors {100} and {101}, respectively. It was found that the doping of L-arg enhanced the SHG efficiency of KDP and depended on the crystal growth sectors. The SHG efficiency of KDP:L-arg was by a factor 2.53 and 3.95 higher in comparison with those of pure KDP for {101} and {100} growth sector, respectively. The doping was found to lead to softening of both faces by ∼3–10% and ∼14–17% in the sectors {101} and {100}, respectively. Investigation of the influence of L-arg molecules on the bulk laser damage threshold of the crystals showed that the bulk laser damage threshold of the samples of KDP:L-arg crystal was higher than the one of the pure crystal in the sector {101} and lower in the sector {100}. The correlation between microhardness and laser damage threshold were discussed. The study is helpful for further searching, designing and simulation of hybrid NLO materials.
Keywords:Potassium dihydrogen phosphate  L-arginine  Laser damage threshold  Microhardness  Optical materials
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号