基于深度学习的单步目标检测器特征增强算法 |
| |
作者姓名: | 孙元辉 徐智勇 张建林 许涛 |
| |
作者单位: | 中国科学院光电技术研究所,成都,610000;中国船舶工业系统工程研究院,北京,100036 |
| |
摘 要: | 针对基于深度学习的目标检测网络模型多采用级联的卷积网络结构进行特征提取,没有很好地利用多尺度特征融合的信息,以及卷积往往采用方形卷积核而没有提取出具备方向性的特征等问题,提出了一种特征提取模块,采用不同大小形状的卷积核结合异性卷积核并行提取特征,并进行融合。该类结构相比于级联网络更能提取并融合目标的多尺度特征,同时提取具有方向性的特征。提出的特征增强型单步目标检测器(Feature Enhanced Single Shot Detector,FESSD)网络基于单步目标检测器(Single Shot Detector,SSD),修改了网络结构、加入特征提取模块并采用多层特征融合,在VOC0712数据集上大大提高了检测准确率。
|
关 键 词: | 深度学习 目标检测 特征融合 方向性特征 |
收稿时间: | 2018-07-27 |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《半导体光电》浏览原始摘要信息 |
|
点击此处可从《半导体光电》下载全文 |
|