首页 | 本学科首页   官方微博 | 高级检索  
     

结合单高斯与光流法的无人机运动目标检测
引用本文:范长军,文凌艳,毛泉涌,祝中科. 结合单高斯与光流法的无人机运动目标检测[J]. 计算机系统应用, 2019, 28(2): 184-189
作者姓名:范长军  文凌艳  毛泉涌  祝中科
作者单位:中国电子科技集团公司第五十二研究所, 杭州 310012,中国电子科技集团公司第五十二研究所, 杭州 310012,中国电子科技集团公司第五十二研究所, 杭州 310012,中国电子科技集团公司第五十二研究所, 杭州 310012
摘    要:针对无人机场景下运动目标检测对实时性要求高,运动背景、环境光照易变化等问题,提出一种结合单高斯与光流法的运动目标检测算法.首先,对运动相机捕捉的图像采用改进的单高斯模型进行背景建模,并融合前一帧图像的多个高斯模型来进行运动补偿,然后,将得到的前景图像作为掩模来提取特征点和进行光流跟踪,并对稀疏特征点的运动轨迹进行层次聚类.实验结果表明,该算法能有效地处理运动相机造成的前景对背景模型的干扰,背景建模速度快,对光照变化不敏感,检测出的目标接近真实目标.

关 键 词:运动目标检测  单高斯模型  运动补偿  光流法  层次聚类
收稿时间:2018-07-16
修稿时间:2018-08-09

Detection of Moving Objects in UAV Video Based on Single Gaussian Model and Optical Flow Analysis
FAN Chang-Jun,WEN Ling-Yan,MAO Quan-Yong and ZHU Zhong-Ke. Detection of Moving Objects in UAV Video Based on Single Gaussian Model and Optical Flow Analysis[J]. Computer Systems& Applications, 2019, 28(2): 184-189
Authors:FAN Chang-Jun  WEN Ling-Yan  MAO Quan-Yong  ZHU Zhong-Ke
Affiliation:The 52 nd Research Institute, CETHIK Group Co. Ltd., Hangzhou 310012, China,The 52 nd Research Institute, CETHIK Group Co. Ltd., Hangzhou 310012, China,The 52 nd Research Institute, CETHIK Group Co. Ltd., Hangzhou 310012, China and The 52 nd Research Institute, CETHIK Group Co. Ltd., Hangzhou 310012, China
Abstract:To meet the real-time demand of moving object detection in Unmanned Air Vehicle (UAV), and to cope with the problems of moving background and variable illumination, a novel moving object detection technique based on Single Gaussian Model (SGM) and optical flow is presented. First, an improved SGM is applied to model the background of the image captured by moving camera, and then the corresponding models of previous frame are fused to compensate the motion of camera. Second, the obtained foreground is used as a mask to extract feature points to calculate optical flow, and then these sparse points are clustered to detect the objects. Experimental results demonstrated the effectiveness of the proposed approach in preventing the background model of SGM from being contaminated by the foreground, as well as dealing with illumination changes. It can also update background model quickly and obtain moving objects precisely.
Keywords:moving object detection  Single Gaussian Model (SGM)  motion compensation  optical flow analysis  hierarchical clustering
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号