首页 | 本学科首页   官方微博 | 高级检索  
     

面向不平衡数据的分类算法
引用本文:蒋宗礼,史倩月. 面向不平衡数据的分类算法[J]. 计算机系统应用, 2019, 28(8): 120-128
作者姓名:蒋宗礼  史倩月
作者单位:北京工业大学 信息学部,北京,100124;北京工业大学 信息学部,北京,100124
摘    要:不平衡数据在分类时往往会偏向"多数",传统过采样生成的样本不能较好的表达原始数据集分布特征.改进的变分自编码器结合数据预处理方法,通过少数类样本训练,使用变分自编码器的生成器生成样本,用于以均衡训练数据集,从而解决传统采样导致的不平衡数据引起分类过拟合问题.我们在UCI四个常用的数据集上进行了实验,结果表明该算法在保证准确率的同时提高了F_measureG_mean.

关 键 词:不平衡数据  分类  变分自编码器  过采样  深度学习
收稿时间:2019-01-08
修稿时间:2019-02-03

Classification Algorithm for Imbalanced Data Set
JIANG Zong-Li and SHI Qian-Yue. Classification Algorithm for Imbalanced Data Set[J]. Computer Systems& Applications, 2019, 28(8): 120-128
Authors:JIANG Zong-Li and SHI Qian-Yue
Affiliation:Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China and Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
Abstract:Imbalanced dataset tends to be biased towards "majority" when classifying, and samples generated by traditional over-sampling cannot well express the distribution characteristics of the original dataset. The improved variational autoencoders combine with data preprocessing method, generate samples by the generator of variational autoencoders trained by the minority class samples to balance the training data set, solve the overfitting problem caused by imbalanced dataset of traditional sampling. Experiments are carried out on four commonly used UCI datasets, the results demonstrate that the proposed method shows better classification performance in F_measure and G_mean with high accuracy.
Keywords:imbalanced dataset  classification  variational autoencoders  over-sampling  deep learning
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号