首页 | 本学科首页   官方微博 | 高级检索  
     

基于Multi-head Attention和Bi-LSTM的实体关系分类
引用本文:刘峰,高赛,于碧辉,郭放达. 基于Multi-head Attention和Bi-LSTM的实体关系分类[J]. 计算机系统应用, 2019, 28(6): 118-124
作者姓名:刘峰  高赛  于碧辉  郭放达
作者单位:中国科学院大学, 北京 100049;中国科学院 沈阳计算技术研究所, 沈阳 110168;东北大学,沈阳,110819
摘    要:关系分类是自然语言处理领域的一项重要任务,能够为知识图谱的构建、问答系统和信息检索等提供技术支持.与传统关系分类方法相比较,基于神经网络和注意力机制的关系分类模型在各种关系分类任务中都获得了更出色的表现.以往的模型大多采用单层注意力机制,特征表达相对单一.因此本文在已有研究基础上,引入多头注意力机制(Multi-head attention),旨在让模型从不同表示空间上获取关于句子更多层面的信息,提高模型的特征表达能力.同时在现有的词向量和位置向量作为网络输入的基础上,进一步引入依存句法特征和相对核心谓词依赖特征,其中依存句法特征包括当前词的依存关系值和所依赖的父节点位置,从而使模型进一步获取更多的文本句法信息.在SemEval-2010任务8数据集上的实验结果证明,该方法相较之前的深度学习模型,性能有进一步提高.

关 键 词:关系分类  Bi-LSTM  句法特征  self-attention  multi-headattention
收稿时间:2018-12-13
修稿时间:2019-01-08

Relation Classification Based on Multi-Head Attention and Bidirectional Long Short-Term Memory Networks
LIU Feng,GAO Sai,YU Bi-Hui and GUO Fang-Da. Relation Classification Based on Multi-Head Attention and Bidirectional Long Short-Term Memory Networks[J]. Computer Systems& Applications, 2019, 28(6): 118-124
Authors:LIU Feng  GAO Sai  YU Bi-Hui  GUO Fang-Da
Affiliation:University of Chinese Academy of Sciences, Beijing 100049, China;Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China,University of Chinese Academy of Sciences, Beijing 100049, China;Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China,University of Chinese Academy of Sciences, Beijing 100049, China;Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China and Northeastern University, Shenyang 110819, China
Abstract:Relation classification is an important subtask in the field of Natural Language Processing (NLP), which provides technical support for the construction of knowledge map, question answer systems, and information retrieval. Compared with traditional relational classification methods, deep learning model-based methods with attention have achieved better performance in various relation classification tasks. Most of previous models use one-layer attention, which cause single representation of the feature. Therefore, on the basis of the existing works, the study introduces a multi-head attention, which aims to enable the model to obtain more information about sentence from different representation subspaces and improve the model''s feature expression ability. Otherwise, based on the existing word embedding and position embedding as network input, we introduce dependency parsing feature and relative core predicate dependency feature to the model. The dependency parsing features include the dependency value and the location of the dependent parent node position for the current word. The experimental results on the SemEval-2010 relation classification task show that the proposed method outperforms most of the existing methods.
Keywords:relation classification  Bi-LSTM  syntax feature  self-attention  multi-head attention
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号