首页 | 本学科首页   官方微博 | 高级检索  
     


Formation of porous natural-synthetic polymer composites using emulsion templating and supercritical fluid assisted impregnation
Authors:Sonia Partap  Andrew K. Hebb  Ihtesham ur Rehman  Jawwad A. Darr
Affiliation:(1) Department of Materials, Queen Mary University of London, Mile End, E1 4NS, UK;(2) IRC in Biomedical Materials, Department of Materials, Queen Mary University of London, Mile End, E1 4NS, UK
Abstract:Summary Porous natural-synthetic polymer composites were prepared using an alginate emulsion templating step followed by supercritical carbon dioxide (sc-CO2) assisted impregnation (and subsequent polymerisation) of synthetic monomer mixtures. In the impregnation step, an initiator and either 2-hydroxyethylmethacrylate (HEMA), butylmethacrylate (BMA), ethyleneglycoldimethacrylate (EGDMA) or trimethylolpropanetrimethacrylate (TRIM) monomers, respectively, were used. After impregnation into the porous alginate foam, the synthetic monomer(s) were polymerised in situ, forming porous composites with increased stiffness. A number of methods were used to assess the effects of the impregnation/polymerisation process including uniaxial compression testing, scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), helium pycnometry and Fourier transform infra-red (FTIR) spectroscopy. Our results suggest that alginate foams impregnated with HEMA show higher weight gains and are stiffer than those impregnated with BMA. Such stiffer porous composites are potentially better suited than the unmodified materials in applications such as tissue engineering (cell-seeded) scaffolds, where mechanical conditioning is desired to stimulate cells for development of neo tissue growth.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号