首页 | 本学科首页   官方微博 | 高级检索  
     


Hardware Transactional Memory Exploration in Coherence-Free Many-Core Architectures
Authors:Dimitra Papagiannopoulou  Andrea Marongiu  Tali Moreshet  Luca Benini  Maurice Herlihy  R Iris Bahar
Affiliation:1.Brown University,Providence,USA;2.ETH Zurich,Zurich,Switzerland;3.DEI — University of Bologna,Bologna,Italy;4.Boston University,Boston,USA
Abstract:High-end embedded systems, like their general-purpose counterparts, are turning to many-core cluster-based shared-memory architectures that provide a shared memory abstraction subject to non-uniform memory access costs. In order to keep the cores and memory hierarchy simple, many-core embedded systems tend to employ simple, scratchpad-like memories, rather than hardware managed caches that require some form of cache coherence management. These “coherence-free” systems still require some means to synchronize memory accesses and guarantee memory consistency. Conventional lock-based approaches may be employed to accomplish the synchronization, but may lead to both usability and performance issues. Instead, speculative synchronization, such as hardware transactional memory, may be a more attractive approach. However, hardware speculative techniques traditionally rely on the underlying cache-coherence protocol to synchronize memory accesses among the cores. The lack of a cache-coherence protocol adds new challenges in the design of hardware speculative support. In this article, we present a new scheme for hardware transactional memory (HTM) support within a cluster-based, many-core embedded system that lacks an underlying cache-coherence protocol. We propose two alternative data versioning implementations for the HTM support, Full-Mirroring and Distributed Logging and we conduct a performance comparison between them. To the best of our knowledge, these are the first designs for speculative synchronization for this type of architecture. Through a set of benchmark experiments using our simulation platform, we show that our designs can achieve significant performance improvements over traditional lock-based schemes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号