首页 | 本学科首页   官方微博 | 高级检索  
     


Heating mechanisms in a near-field optical system
Authors:Kann J L  Milster T D  Froehlich F F  Ziolkowski R W  Judkins J B
Abstract:A finite-difference-time-domain and two finite-difference-thermal models are used to study various heating mechanisms in a near-field optical system. It is shown that the dominant mechanism of sample heating occurs from optical power that is transferred from the probe to a metallic thin-film sample. The optical power is absorbed in the sample and converted to heat. The effects of thermal radiation from the probe 's coating and thermal conduction between the probe and the sample are found to be negligible. In a two-dimensional waveguide with TE polarization, most of the optical power is transferred directly from the aperture to the sample. In a two-dimensional waveguide with TM polarization, there is significant optical power transfer between the probe 's aluminum coating and the sample. The power transfer results in a wider thermal distribution with TM polarization than with TE polarization. Using computed temperature distributions in a Co -Pt film, we predict the relative size of thermally written marks in a three-dimensional geometry. The predicted mark size shows a 30 % asymmetry that is due to polarization effects.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号