首页 | 本学科首页   官方微博 | 高级检索  
     


Insights into protection mechanisms of organic coatings from thermal testing with EIS
Authors:Zalilah Sharer  John Sykes
Affiliation:1. Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford, UK;2. Department of Gas Engineering, University of Technology Malaysia, 81310 Johor, Malaysia
Abstract:The proposition that corrosion rate is limited by the ionic resistance of an organic coating has been tested. Mild steel panels coated with an epoxy-phenolic paint were exposed to 3% sodium chloride solution at 50 °C for different periods and characterized by electrochemical impedance spectroscopy (EIS) across a range of temperatures (25–50 °C). Changes in the film resistance and charge-transfer resistance with temperature were analysed to deduce activation energies for the processes involved. It was found that the calculated activation energy from coating resistance is significantly lower than the activation energy for the charge transfer resistance. This suggests that the ionic resistance of the coating, as apparent in an AC measurement, cannot be controlling the corrosion rate. Coating resistances for free films of the same coating show even higher activation energy values, so that the resistance of un-degraded areas of the coating within the current path could be controlling the current flow. Potentiostatic pulse tests on coated metal have enabled iR-corrected polarization curves to be plotted at different temperatures that gave high activation energies from the estimated corrosion currents. This provides two possible explanations that can account for the results.
Keywords:EIS  Organic coating  Free film  Thermal testing  Potentiostatic pulse test
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号