首页 | 本学科首页   官方微博 | 高级检索  
     

基于Tukey规则与初始中心点优化的K-means聚类改进算法
引用本文:柳菁,邱紫滢,郭茂祖,余冬华. 基于Tukey规则与初始中心点优化的K-means聚类改进算法[J]. 数据采集与处理, 2023, 38(3): 643-651
作者姓名:柳菁  邱紫滢  郭茂祖  余冬华
作者单位:1.绍兴文理学院计算机科学与工程系, 绍兴 312000;2.北京建筑大学电子信息工程学院, 北京 100044
基金项目:国家自然科学基金(62002227);绍兴文理学院校级科研项目(2021LG004)。
摘    要:针对K-means聚类算法存在的初始中心点选择及异常点、离群点极易影响聚类结果等待改进问题,提出了一个基于Tukey规则与优化初始中心点选择的K-means改进算法。该算法利用Tukey规则构造核心与非核心子集,将聚类过程划分成2个阶段。同时,在核心子集上执行中心点逐个递增优化选择策略,选出初始中心点。在来自UCI的20个数据集上聚类结果表明,本文提出的算法优于K-means++聚类算法,有效地提升了聚类性能。

关 键 词:数据挖掘  K-means聚类算法  Tukey规则  中心点优化
收稿时间:2022-03-24
修稿时间:2022-06-23

Improved K-means Clustering Algorithm Based on Tukey Rule and Initial Center Point Optimization
Liu Jing,Qiu Ziying,Gao Maozu,Yu Donghua. Improved K-means Clustering Algorithm Based on Tukey Rule and Initial Center Point Optimization[J]. Journal of Data Acquisition & Processing, 2023, 38(3): 643-651
Authors:Liu Jing  Qiu Ziying  Gao Maozu  Yu Donghua
Affiliation:1.Department of Computer Science and Engineering, Shaoxing University, Shaoxing 312000, China;2.School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
Abstract:
Keywords:data mining  K-means clustering algorithm  Tukey rule  center point optimization
点击此处可从《数据采集与处理》浏览原始摘要信息
点击此处可从《数据采集与处理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号