首页 | 本学科首页   官方微博 | 高级检索  
     


Fatigue behavior and oxidation resistance of carbon/ceramic composites reinforced with continuous carbon fibers
Affiliation:1. AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, Al. Mickiewicza 30, 30-059 Krakow, Poland;2. Centro Universitario de la Defensa, Academia General del Aire, Calle Coronel López Peña, s/n, Santiago de la Ribera, 30720 Murcia, Spain;3. IFJ – Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, Krakow, Poland;1. Hunan Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Hunan 411105, PR China;2. Laboratory for Quantum Engineering Micro–Nano Energy Technology, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, PR China;1. School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, PR China;2. Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong;1. Escola Técnica de Saúde, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa CEP 58051-900, PB, Brazil;2. Departamento de Engenharia de Materiais, Universidade Federal de Campina Grande, Av. Aprígio Veloso 882, Catolé, Campina Grande CEP 58 429-900, PB, Brazil;3. Departamento de Engenharia de Materiais, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa CEP 58051-900, PB, Brazil;1. Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101, Taiwan;2. Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan City 70101, Taiwan;3. Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan City 70101, Taiwan
Abstract:The aim of this work was to compare fatigue behavior and oxidation resistance of pitch-derived CC (carbon) composite with CC/ceramic (carbon/ceramic) composites obtained by impregnation of CC composite with polysiloxane-based preceram and their subsequent heat treatment. Two types of CC/ceramic composites were studied; CC/SiCO composite obtained at 1000 °C, and CC/SiC composite obtained at 1700 °C. Both types of composites show much better fatigue mechanical performance in comparison to pure CC composite. CC/SiCO composite had 3 times better fatigue properties, and CC/SiC composite 4.5 times better fatigue properties than the reference CC composite. After a fatigue test composites partially retain their mechanical properties, and normalized residual modulus in the direction perpendicular to laminates exceeds 50% for CC and CC/SiCO composites. In the other directions normalized residual modulus is higher than 80% for all composites. Oxidative tests led at 600 °C in air atmosphere indicated oxidation resistance of CC/SiC composites.
Keywords:B. Composites  C. Fatigue  E. Structural applications  Carbon/ceramic composites
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号