首页 | 本学科首页   官方微博 | 高级检索  
     


Oxidation studies of anodes layer microstructures in metal supported solid oxide fuel cells
Affiliation:1. CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China;2. Department of Chemistry, Leland Stanford Junior University, Stanford, CA 94305, United States
Abstract:The effect of oxidation on the microstructural and mechanical stability of ceramic layers in metal supported solid oxide fuel cells is reported. Half-cells that are produced with a reduced nickel based anode are oxidized for different times and temperatures in order to assess stability limits. Samples are analyzed in terms of the effective cell curvature and microstructure, where further insight is obtained via the observation of microstructures before and after oxidization. The interpretation is aided by a comparison to the behavior of structures without electrolyte layer. Electrolyte cracking and anode delamination are observed after oxidation, where the latter is absent in case of oxidation experiments without electrolyte layer, highlighting the failure relevance of strain induced by electrolyte deposition.
Keywords:C. Fracture  Solid oxide fuel cells  Metal supported  Oxidation  Delamination
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号