首页 | 本学科首页   官方微博 | 高级检索  
     


Embedding ZnO nanorods into porous cellulose aerogels via a facile one-step low-temperature hydrothermal method
Affiliation:1. Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan, Iran;2. Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran;1. Structural Integrity Group, Escuela Politécnica Superior, Avenida Cantabria s/n, 09006 Burgos, Spain;2. Civil Engineering Department, University of Burgos, Calle Villadiego s/n, 09001 Burgos, Spain;1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China;2. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore;3. State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
Abstract:A facile effective one-step low-temperature hydrothermal approach was employed to in situ embed ZnO nanorods into the porous cellulose aerogels. Besides, the preparation of cellulose aerogels is based on a green NaOH/polyethylene glycol solution. The rod-like ZnO has average diameter of about 348 nm and length of about 1.49 μm, and displays wurtzite phase. Meanwhile, the scanning electron microscope and transmission electron microscopy observations confirm that the nanorods are tightly anchored to the aerogels matrixes, and exhibit good dispersion without dramatic agglomeration, indicating that the cellulose aerogels are a class of ideal green matrix materials to support nanoparticles. Moreover, the method might also be extended to fabricate other multifunctional cellulose-based nanocomposites.
Keywords:Zinc oxide  Cellulose aerogels  Hydrothermal method  Nanocomposites  Polymers
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号