首页 | 本学科首页   官方微博 | 高级检索  
     


Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments
Authors:Couture Raoul-Marie  Van Cappellen Philippe
Affiliation:School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0340, USA. raoul.couture@eas.gatech.edu
Abstract:Recent evidence suggests that the oxidation of arsenite by zero-valent sulfur (S(0)) may produce stable aqueous arsenate species under highly reducing conditions. The speciation of arsenic (As) in reducing soils, sediments and aquifers may therefore be far more complex than previously thought. We illustrate this by presenting updated E(h)-pH diagrams of As speciation in sulfidic waters that include the most recently reported formation constants for sulfide complexes of As(III) and As(V). The results show that the stability fields of As(III) and As(V) (oxy)thioanions cover a large pH range, from pH 5 to 10. In particular, As(V)-S(-II) complexes significantly enhance the predicted solubility of As under reducing conditions. Equilibrium calculations further show that, under conditions representative of sulfidic pore waters and in the presence of solid-phase elemental sulfur, the S(0)((aq))/HS(-) couple yields a redox potential (E(h))~ 0.1 V higher than the SO(4)(2-)/HS(-) couple. S(0) may thus help stabilize aqueous As(V) not only by providing an electron acceptor for As(III) but also by contributing to a more oxidizing redox state.
Keywords:Zero-valent sulfur  Sulfidic environments  Thioarsenic anions  Equilibrium speciation  Eh–pH diagrams
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号