首页 | 本学科首页   官方微博 | 高级检索  
     

基于复合余弦基神经网络的图像去噪滤波器
引用本文:陈杨生,颜钢锋. 基于复合余弦基神经网络的图像去噪滤波器[J]. 浙江大学学报(工学版), 2006, 40(8): 1348-1351
作者姓名:陈杨生  颜钢锋
作者单位:陈杨生,颜钢锋(浙江大学 电气工程学院,浙江 杭州 310027)
摘    要:针对图像受噪声干扰问题,提出了一种基于复合余弦基神经网络的图像去噪低通滤波器,以及保证该神经网络算法收敛的收敛定理,并给出了证明.该方法通过复合余弦基神经网络对幅频响应训练,调整网络权值,控制总的能量函数在给定的极小范围内,使得实际滤波器特性逼近理想图像去噪低通滤波器特性,从而达到满意的去噪效果.仿真结果显示,复合余弦基神经网络图像去噪滤波器各项特性接近理想滤波器.与传统的图像滤波器去噪方法比较,该方法设计的图像去噪滤波器具有更好的去噪效果.

关 键 词:  font-family: 宋体"  >余弦基  图像滤波器  神经网络  数字图像  EN-US"  >    font-family: 宋体"  >学习率
文章编号:1008-973X(2006)08-1348-04
收稿时间:2005-05-12
修稿时间:2005-05-12

Compound-cosine-basis neural network filter for removing image noise
CHEN Yang-sheng,YAN Gang-feng. Compound-cosine-basis neural network filter for removing image noise[J]. Journal of Zhejiang University(Engineering Science), 2006, 40(8): 1348-1351
Authors:CHEN Yang-sheng  YAN Gang-feng
Affiliation:College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Abstract:A 2-D lowpass filter based on the compound-cosine-basis neural network(CNNL) was proposed to overcome the defects of conventional methods for removing image noise,and the convergence theorem which ensures that this algorithm is convergent was presented.This method manages to have the characteristics of the real filters and approach the characteristics of the ideal lowpass filters for removing image noise through the training of the compound-cosine-basis neural network,which adjusts the weight of the network along with the training,so that the energy function is less than the infinitesimal,then good results of removing image noise could be attained.The simulation results reached nearly ideal filter characteristics,and the performance of removing image noise using this filter was compared with the median filter.The experimental results showed that the effect of this method for removing image noise is better.
Keywords:compound-cosine-basis   image filter   neural network   digital image   training rate
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号