首页 | 本学科首页   官方微博 | 高级检索  
     

基于电力细分市场的负荷分解预测方法
引用本文:董继征,何怡刚,王薇,王桓,陈少江,李湘祁. 基于电力细分市场的负荷分解预测方法[J]. 电网技术, 2005, 29(17): 40-43
作者姓名:董继征  何怡刚  王薇  王桓  陈少江  李湘祁
作者单位:湖南大学,湖南省,长沙市,410082;湖南省电力公司,湖南省,长沙市,410007
摘    要:分析了我国五大用电细分市场,对不同行业的用电负荷与其影响因素建立了有针对性的联系,对其分别建模进行综合预测.在预测不同行业负荷时,利用小波分析的方法将其分解为与气象因素无关的稳定项和与气象因素相关的随机项,由于稳定项预测精度高,随机项较难预测但幅值较小,因此削弱了随机因素带来的预测误差对最终结果的影响.用湖南省负荷数据对该方法进行了实测,证明了其优越性.

关 键 词:细分市场  负荷预测  电力系统  小波分析  气象因素
文章编号:1000-3673(2005)17-0040-04
收稿时间:2005-06-01
修稿时间:2005-06-01

LOAD DECOMPOSITION FORECASTING METHOD BASED ON ELECTRICITY SEGMENT MARKET
DONG Ji-zheng,HE Yi-gang,WANG Wei,WANG Huan,CHEN Shao-jiang,LI Xiang-qi. LOAD DECOMPOSITION FORECASTING METHOD BASED ON ELECTRICITY SEGMENT MARKET[J]. Power System Technology, 2005, 29(17): 40-43
Authors:DONG Ji-zheng  HE Yi-gang  WANG Wei  WANG Huan  CHEN Shao-jiang  LI Xiang-qi
Abstract:Based on the analysis of five domestic power utilization segment markets, the relations among electricity consumption of different industries and its influencing factors are built up and respectively modeled to perform comprehensive forecasting. When the load of different industries is forecasted, the load is decomposed into stationary terms that is not related to meteorologic factors and random term that is related to meteorologic factors by use of wavelet analysis. Because the forecasting accuracy of stationary term is higher and the amplitude of random term, although it is difficult to forecast, is smaller, so the impact of forecasting error bringing about by random factors on final forecasting result is weakened. The results of calculation using actual Hunan provincial load data show that the proposed method is effective.
Keywords:Segment market  Load forecasting  Power system  Wavelet analysis  Meteorologic factor
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电网技术》浏览原始摘要信息
点击此处可从《电网技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号