首页 | 本学科首页   官方微博 | 高级检索  
     


Seismic soil–structure interaction analysis of wind turbines in frequency domain
Authors:Amir Reza Ghaemmaghami  Oya Mercan  Reza Kianoush
Affiliation:1. Department of Civil Engineering, Ryerson University, Toronto, Ontario, Canada;2. Department of Civil Engineering, University of Toronto, Toronto, Ontario, Canada
Abstract:In this paper, the seismic behavior of wind turbines sitting on a finite flexible soil layer is investigated in three‐dimensional space. A numerical algorithm formulated in frequency domain is proposed in order to simulate the dynamic soil–structure interaction (SSI). The wind turbine is discretized using finite element method (FEM) while, the underlying soil is represented by complex dynamic stiffness functions based on cone models. A parametric study consisting of 24 ground motions and three soil profiles is carried out, and different response quantities of the wind tower model are calculated and presented in the paper. The free‐field ground motions are estimated based on an equivalent linear approach using SHAKE2000 computer software. Transfer functions for total acceleration of the wind tower are obtained under the considered soil profiles and the modal frequencies of the coupled wind turbine–soil foundation are estimated. It is shown that the response quantities such as displacement, rotation, acceleration, base shear and moment are significantly affected by SSI, although the effect of SSI on the fundamental frequencies of the wind tower is insignificant. The moment and shear force distribution along the height of the tower is highly influenced as the soil stiffness decreases. The change in seismic demand distribution along the tower height because of SSI is not addressed by simplified design approached and should be carefully considered in seismic design of wind towers. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:soil–  structure interaction  wind turbines  cone model  finite element model  frequency domain analysis  dynamic response
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号