首页 | 本学科首页   官方微博 | 高级检索  
     


Gaseous corrosion of alloys and novel coatings in simulated environments for coal,waste and biomass boilers
Authors:J. Kalivodova,D. Baxter,M. Schü  tze,V. Rohr
Abstract:The reduction of emissions from power generation plants is a key part of the Kyoto Protocol. Reduced emissions per unit of power produced can be achieved via increased thermal efficiency and this can be achieved by increasing steam parameters (i.e. temperature and pressure). Increased steam parameters in turn leads to accelerated corrosion of boiler components. Biomass and solid waste fuels introduce a number of aggressive species into process environments that result in enhanced rates of boiler degradation. This paper reports on studies, both theoretical and experimental, of the corrosion behaviour of high‐alloy steels and Ni‐base alloys as well as coatings for use in high efficiency coal and/or biomass‐ and waste‐fired power plants. Coatings produced within the SUNASPO project have been laboratory tested in gaseous atmospheres representative of coal combustion, biomass combustion and waste incineration. Laboratory tests were carried out mainly in the temperature range 500 °C to 800 °C. Initial results showed the poor performance of traditional uncoated low‐alloy boiler steels P91 (9% Cr) and HCM12A (12% Cr), as well as the higher alloy steel, 17Cr/13Ni. Results show the beneficial effects of coatings containing Al, Si, Al + Si, Al + Ti and Al + B in reducing the rate of corrosive attack. In a combustion product gas containing 100 ppm HCl and 1000 ppm SO2, aluminizing affords corrosion resistance of low‐alloy steels such as HCM12A and P91 similar to that of Alloy 800 over 1000 h of test. The presence of Al inhibits internal, sometimes localized corrosion by promoting the formation of a protective surface oxide layer even at relatively low temperatures. The results of experiments in simulated coal; biomass and waste atmospheres are presented and discussed in terms of both corrosion kinetics and mechanisms of degradation.
Keywords:High temperature corrosion  Pack cementation  Chlorine  corrosion‐kinetics  degradation  coatings  biomass  high‐alloy steels  Ni‐base alloys
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号