首页 | 本学科首页   官方微博 | 高级检索  
     

基于离散过程神经元的乙烯生产装置软测量
引用本文:贾晓军,贠卫国. 基于离散过程神经元的乙烯生产装置软测量[J]. 数字社区&智能家居, 2009, 5(4): 2701-2703
作者姓名:贾晓军  贠卫国
作者单位:西安建筑科技大学信息与控制工程学院,陕西西安710055
摘    要:针对传统M—P神经网络模型的时间依赖性问题,提出将离散过程神经元应用到乙烯裂解炉软测量中,并将Fletcher—Reeves修正的改进变梯度学习算法应用到离散过程神经元网络,达到提高过程神经元网络的训练速度的目的。最后用乙烯装置的生产数据进行仿真研究,仿真结果表明该改进算法具有明显的快速收敛性,实现了乙烯产率的预测。

关 键 词:离散过程神经元网络  软测量  训练速度  乙烯装置

Soft Sensing of Ethylene Plant Based on the Discrete Process Neural
JIA Xiao-jun,YUN Wei-guo. Soft Sensing of Ethylene Plant Based on the Discrete Process Neural[J]. Digital Community & Smart Home, 2009, 5(4): 2701-2703
Authors:JIA Xiao-jun  YUN Wei-guo
Affiliation:(School of Information and Control, Xi'an University of Architecture and Technology, Xi'an 710055, China)
Abstract:For the time-dependent problem of M-P neural network' model, applied the discrete process neural to the ethylene plant soft sensing, and the application of the Alternating Gradient training algorithm amended by Fletcher-Reeves algorithm on the discrete process of neural network. Finally, use the ethylene production plant production data to emulate. Simulation results show that the improved algorithm has obvious rapid convergence. Achieve a prediction of ethylene production.
Keywords:discrete process neural network  soft sensing  training speed  ethylene plant
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号